Convergence Control Methods for Markov Chain Monte Carlo Algorithms
نویسندگان
چکیده
منابع مشابه
Assessing Convergence of Markov Chain Monte Carlo Algorithms
We motivate the use of convergence diagnostic techniques for Markov Chain Monte Carlo algorithms and review various methods proposed in the MCMC literature. A common notation is established and each method is discussed with particular emphasis on implementational issues and possible extensions. The methods are compared in terms of their interpretability and applicability and recommendations are...
متن کاملConvergence of Adaptive Markov Chain Monte Carlo Algorithms
In the thesis, we study ergodicity of adaptive Markov Chain Monte Carlo methods (MCMC) based on two conditions (Diminishing Adaptation and Containment which together imply ergodicity), explain the advantages of adaptive MCMC, and apply the theoretical result for some applications. First we show several facts: 1. Diminishing Adaptation alone may not guarantee ergodicity; 2. Containment is not ne...
متن کاملOn Adaptive Markov Chain Monte Carlo Algorithms
Abstract We look at adaptive MCMC algorithms that generate stochastic processes based on sequences of transition kernels, where each transition kernel is allowed to depend on the past of the process. We show under certain conditions that the generated stochastic process is ergodic, with appropriate stationary distribution. We then consider the Random Walk Metropolis (RWM) algorithm with normal ...
متن کاملSpeeeding Up Markov Chain Monte Carlo Algorithms
We prove an upper bound on the convergence rate of Markov Chain Monte Carlo (MCMC) algorithms for the important special case when the state space can be aggregated into a smaller space, such that the aggregated chain approximately preserves the Markov property.
متن کاملSequentially Interacting Markov Chain Monte Carlo Methods
We introduce a novel methodology for sampling from a sequence of probability distributions of increasing dimension and estimating their normalizing constants. These problems are usually addressed using Sequential Monte Carlo (SMC) methods. The alternative Sequentially Interacting Markov Chain Monte Carlo (SIMCMC) scheme proposed here works by generating interacting non-Markovian sequences which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Science
سال: 1995
ISSN: 0883-4237
DOI: 10.1214/ss/1177009937